Kalman tracking of linear predictor and harmonic noise models for noisy speech enhancement
نویسندگان
چکیده
This paper presents a speech enhancement method based on the tracking and denoising of the formants of a linear prediction (LP) model of the spectral envelope of speech and the parameters of a harmonic noise model (HNM) of its excitation. The main advantages of tracking and denoising the prominent energy contours of speech are the efficient use of the spectral and temporal structures of successive speech frames and a mitigation of processing artefact known as the ‘musical noise’ or ‘musical tones’. The formant-tracking linear prediction (FTLP) model estimation consists of three stages: (a) speech pre-cleaning based on a spectral amplitude estimation, (b) formant-tracking across successive speech frames using the Viterbi method, and (c) Kalman filtering of the formant trajectories across successive speech frames. The HNM parameters for the excitation signal comprise; voiced/unvoiced decision, the fundamental frequency, the harmonics’ amplitudes and the variance of the noise component of excitation. A frequency-domain pitch extraction method is proposed that searches for the peak signal to noise ratios (SNRs) at the harmonics. For each speech frame several pitch candidates are calculated. An estimate of the pitch trajectory across successive frames is obtained using a Viterbi decoder. The trajectories of the noisy excitation harmonics across successive speech frames are modeled and denoised using Kalman filters. The proposed method is used to deconstruct noisy speech, de-noise its model parameters and then reconstitute speech from its cleaned parts. Experimental evaluations show the performance gains of the formant tracking, pitch extraction and noise reduction stages. 2007 Elsevier Ltd. All rights reserved.
منابع مشابه
Speech Enhancement Using Gaussian Mixture Models, Explicit Bayesian Estimation and Wiener Filtering
Gaussian Mixture Models (GMMs) of power spectral densities of speech and noise are used with explicit Bayesian estimations in Wiener filtering of noisy speech. No assumption is made on the nature or stationarity of the noise. No voice activity detection (VAD) or any other means is employed to estimate the input SNR. The GMM mean vectors are used to form sets of over-determined system of equatio...
متن کاملLPC-based formant enhancement method in Kalman filtering for speech enhancement
In this work, we are concerned by a new iterative Kalman filtering scheme where a linear predictor model parameters are estimated from noisy speech. However, when only noise-corrupted speech is available, the enhancement performance of the Kalman filter is somewhat dependent on the accuracy of the linear prediction coefficients (LPCs) and excitation variance estimates. Nevertheless, linear pred...
متن کاملA Formant Tracking Lp Model for Speech Processing in Car/train Noise
Formant estimation becomes complicated in the presence of correlated background noise such as car and train noise as the spectrum of noise from revolving mechanical sources have their own spectral peaks that affect the number and positions of the observed peaks in noisy speech spectrum. This paper investigates the modeling and estimation of spectral parameters at formants of noisy speech in the...
متن کاملModulation-domain Kalman filtering for single-channel speech enhancement
In this paper, we investigate the modulation-domain Kalman filter (MDKF) and compare its performance with other time-domain and acoustic-domain speech enhancement methods. In contrast to previously reported modulation domain-enhancement methods based on fixed bandpass filtering, the MDKF is an adaptive and linear MMSE estimator that uses models of the temporal changes of the magnitude spectrum ...
متن کاملA formant tracking LP model for speech processing
This paper investigates the modeling and estimation of spectral parameters at formants of noisy speech in the presence of car and train noise. Formant estimation using twodimensional hidden Markov models (2D-HMM) is reviewed and employed to study the influence of noise on observations of formants. The first set of experimental results presented show the influence of car and train noise on the d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computer Speech & Language
دوره 22 شماره
صفحات -
تاریخ انتشار 2008